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On the permanental polynomials of some graphs
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Let G be a simple graph with adjacency matrix A(G) and π(G, x) the permanen-
tal polynomial of G. Let G × H denotes the Cartesian product of graphs G and H .
Inspired by Klein’s idea to compute the permanent of some matrices (Mol. Phy. 31 (3)
(1976) 811–823), in this paper in terms of some orientation of graphs we study the per-
manental polynomial of a type of graphs. Here are some of our main results.

1. If G is a bipartite graph containing no subgraph which is an even subdivision of
K2,3, then G has an orientation Ge such that π(G, x) = det(xI − A(Ge)), where
A(Ge) denotes the skew adjacency matrix of Ge.

2. Let G be a 2−connected outerplanar bipartite graph with n vertices. Then there
exists a 2−connected outerplanar bipartite graph G with 2n + 2 vertices such that
π(G, x) is a factor of π(G, x).

3. Let T be an arbitrary tree with n vertices. Then π(T ×K2, x) = ∏n

i=1(x
2 + 1 + α2

i ),
where α1, α2, . . . , αn are the eigenvalues of T .

KEY WORDS: outerplanar graph, adjacency matrix, skew adjacency matrix, charac-
teristic polynomial, permanental polynomial, Cartesian product, Pfaffian orientation,
nice cycle

1. Introduction

By a simple graph G= (V (G),E(G)) we mean a finite undirected graph,
that is, one with no loops or parallel edges, with the vertex set V (G)=
{v1, v2, . . . , vn} and the edge set E(G) = {e1, e2, . . . , em}, if not specified. The
adjacency matrix of a graph G, here denoted by A(G) = (aij )n×n, is a matrix of
order n whose entries aij = 1 if vertex vi is adjacent to vertex vj and aij = 0
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otherwise. Obviously, A(G) is a symmetric matrix whose trace equals zero. The
characteristic polynomial of a graph G is, by definition

φ(G, x) = det(xI − A(G)), (1)

where I is the unit matrix of order n. The permanental polynomial of G,
denoted by π(G, x), is defined as

π(G, x) = per(xI − A(G)), (2)

where per(X) denotes the permanent of matrix X.
We will denote the characteristic polynomial and permanental polynomial

of a graph G in the coefficient forms as follows.

φ(G, x) = det(xI − A(G)) =
n∑
k=0

akx
n−k, (3)

π(G, x) = per(xI − A(G)) =
n∑
k=0

bkx
n−k. (4)

If G is a bipartite graph, it is not difficult to see [1–5] that

(−1)ka2k � 0, b2k � 0, a2k+1 = b2k+1 = 0 for all k � 0, (5)

and b2k equals
∑

H per(A(H)), where A(H) is the adjacency matrix of the
induced subgraph H of G with 2k vertices and the sum ranges over all induced
subgraphs of G with 2k vertices. Hence if G is a bipartite graph we may write
φ(G, x) and π(G, x) as follows.

φ(G, x) =
[n/2]∑
k=0

a2kx
n−2k, (6)

π(G, x) =
[n/2]∑
k=0

b2kx
n−2k, (7)

where [n/2] denotes the greatest integer no more than n/2.
Note that the characteristic polynomial of graphs and its applications are

extensively examined (see for example [6, 7, 28, 29]). However, with some excep-
tions [1–3,7–14], little about the permanental polynomial and its potential appli-
cations seems to have been published [8]. This may be due to the difficult to
actually computing the permanent per(xI−A(G)). Many shortcuts exist for com-
puting determinants of matrices, whereas only a few methods exist for perma-
nents [6,12,14–19,27].
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Bearing in mind the definition of a permanent, for the coefficients of the
permanental polynomial in equation (4) one has [3,5]

(−1)kbk =
∑
S

2c(S), (8)

where S is a Sachs subgraph of G with k vertices (a subgraph S is called a Sachs
subgraph if all components of S are edges or cycles) and c(S) denotes the num-
ber of cycles in S, and the sum ranges over all Sachs subgraphs of G with k ver-
tices. Perhaps this is the earliest formula for the coefficients of the permanental
polynomial of a graph G. Obviously, this is not a good method to compute the
permanental polynomial of graphs. In fact since the complexity of computation
of the permanent of matrices is NP-complete, so is the complexity of the compu-
tation of the permanental polynomial of graphs (see [20]). Hence it is interesting
to find methods to compute the permanental polynomial of some type of graphs.

If G is a tree with n vertices, Merris et al. [5] (see also [4]) proved that if

φ(G, x) =
[n/2]∑
k=0

a2kx
n−2k then π(G, x) =

[n/2]∑
k=0

(−1)ka2kx
n−2k. (9)

This result was generalized by Borowiechi [1] (see also [4]) as follows. If G is a
bipartite graph containing no cycle of length 4s, s ∈ {1, 2, . . . } and φ(G, x) =∑[n/2]

k=0 a2kx
n−2k then π(G, x) = ∑[n/2]

k=0 (−1)ka2kx
n−2k. Note that the characteristic

polynomial can be computed easily. Hence these results show that the permanen-
tal polynomial of a tree or a bipartite graph containing no cycle of length 4s,
s ∈ {1, 2, . . . } can be computed easily. Recently, the relation between permanen-
tal and characteristic polynomials of some chemical graphs were considered in
[4,8–10].

In order to formulate our main results, we need to introduce some notation.
Let G be a simple graph. A set M of edges in G is a matching if every vertex of
G is incident with at most one edge in M; it is a perfect matching if every vertex
of G is incident with exactly one edge in M. We denote by M(G) the number of
perfect matchings of G. If M is a perfect matching of G, an M-alternating cycle
in G is a cycle whose edges are alternately in E(G)\M and M. Let G be a graph.
We say that a cycle C of G is nice if G− C contains a perfect matching, where
G−C denotes the induced subgraph of G obtained from G by deleting the ver-
tices of C. Let Ge be an arbitrary orientation of G. The skew adjacency matrix
of Ge, denoted by A(Ge), is defined as follows:

A(Ge) = (bij )n×n, bij =



1 if (vi, vj ) ∈ E(Ge),

−1 if (vj , vi) ∈ E(Ge),

0 otherwise.
(10)

Hence the skew adjacency matrix A(Ge) is a skew symmetric matrix, that is,
(A(Ge))T = −A(Ge), where BT denotes the transpose of the matrix B.
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Let G be a simple graph and let G0,G1,G2, . . . ,Gk be graphs such that
G0 = G and, for each i > 0, Gi can be obtained from Gi−1 by subdividing an
edge twice. Then Gk is said to be an even subdivision of G. A plane graph G

is called to be outerplanar if it is planar and embeddable into the plane such
that all vertices lie on the outer face. Throughout this paper, G×H denotes the
Cartesian product of two graphs G and H . We denote the complete graph with
n vertices by Kn and the complete bipartite graph by Ks,t .

In this paper, inspired by the idea to compute the permanent of some matri-
ces in [12], we consider the permanental polynomial of some graphs. We will
prove the following results.

(1) If G is a bipartite graph containing no subgraph which is an even sub-
division of K2,3, then G has an orientation Ge such that π(G, x)=
det(xI − A(Ge)), where A(Ge) denotes the skew adjacency matrix of
Ge.

(2) Let G be a 2-connected outerplanar bipartite graph with n vertices.
Then there exists a 2-connected outerplanar bipartite graph G with
2n+ 2 vertices such that π(G, x) is a factor of π(G, x).

(3) Let T be an arbitrary tree with n vertices. Then π(T × K2, x)=∏n
i=1(x

2 + 1 + α2
i ), where α1, α2, . . . , αn are the eigenvalues of T .

2. Preliminaries

If D is an orientation of a simple graph G and C is a cycle of even length,
we say that C is oddly oriented in D if C contains odd number of edges that are
directed in D in the direction of each orientation of C. We say that D is a Pfaffi-
an orientation of G if every nice cycle of even length of G is oddly oriented in D.
Kasteleyn [21] introduced a remarkable method for enumerating perfect match-
ings which reduces the enumeration to the evaluation of the determinant of the
skew adjacency matrix of the Pfaffian orientation of G as follows.

Lemma 2.1. [22] Let Ge be a Pfaffian orientation of a graph G. Then

M2(G) = detA(Ge),

where A(Ge) is the skew adjacency matrix of Ge.

Lemma 2.2. [22] Let G be a connected plane graph, and Ge an orientation of G
such that every boundary face – except possibly the infinite face – has an odd
number of edges oriented clockwise. Then in every cycle of Ge the number of
edges oriented clockwise is of opposite parity to the number of vertices of Ge

inside the cycle. Consequently, Ge is a Pfaffian orientation of G. Furthermore,
such an orientation can be constructed in polynomial time.
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Lemma 2.3. [22] Let G be any simple graph with even number of vertices, and
Ge an orientation of G. Then the following three properties are equivalent:

(1) Ge is a Pfaffian orientation.
(2) Every nice cycle of even length in G is oddly oriented in Ge.
(3) If G contains a perfect matching, then for some perfect matching F ,

every F -alternating cycle is oddly oriented in Ge.

Lemma 2.4. [23] If G is a simple graph containing no subgraph which is, after
the contraction of at most one cycle of odd length, an even subdivision of K2,3,
then G has an orientation under which every cycle of even length is oriented
oddly. Furthermore, such an orientation is a Pfaffian orientation of G.

The above lemma was given by Fischer and Little [23] in 2002. In fact, they
gave a more general characterization of graphs that have an orientation under
which every cycle of even length has a prescribed parity.

Lemma 2.5. [24] Let T be an arbitrary tree. Then every cycle of T ×K2 is a nice
cycle.

Let T be a tree with the vertex set V (T ) = {v1, v2, . . . , vn} and T e an arbi-
trary orientation of T . Take two copies of T , denoted by T1 with the vertex set
V (T1) = {v′

1, v
′
2, . . . , v

′
n} and T2 with the vertex set V (T2) = {v′′

1 , v
′′
2 , . . . , v

′′
n},

and add an edge v′
iv

′′
i between every pair of corresponding vertices v′

i and v′′
i for

1 � i � n, respectively. Then the resulting graph is T ×K2. It is obvious that all
adding edges v′

iv
′′
i for 1 � i � n in T ×K2 form a perfect matching. If we define

the orientation T e1 of T1 in T×K2 to be T e and the orientation T e2 of T2 in T×K2

to be the converse of T e, that is, the orientation by reversing the orientation of
each arc of T e, and the directions of edges v′

iv
′′
i for 1 � i � n in T × K2 to be

from v′
i to v′′

i . Then we obtain an orientation of T ×K2 from the orientation T e

of T , denoted here by (T ×K2)
e. Figure 1 illustrates this procedure.

In terms of Lemmas 2.3 and 2.5, Yan and Zhang [24] or Yan [25] proved
the following lemma.

(a) (b) (c)

Figure 1. (a) A tree T ; (b) an orientation T e of T ; (c) the orientation (T ×K2)
e of T ×K2.
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Lemma 2.6. [24,25] Let T be an arbitrary tree and T e an arbitrary orientation
of T . Then (T × K2)

e defined above is a Pfaffian orientation of T × K2 under
which every cycle of (T ×K2)

e is oddly oriented.

Lemma 2.7. [22] Let G be a bipartite graph and A(G) the adjacency matrix of
G. Then

per(A(G)) = M2(G), (11)

where M(G) is the number of perfect matchings of G.

3. Main results

Although the complexity of computation of permanent of the square matri-
ces is NP-complete. Klein [12] found a method to compute the permanent of
the adjacency matrix of a type of graphs – outerplanar bipartite graphs. The
key to this method is to orient the outerplanar bipartite graphs such that every
cycle in this orientation is oriented oddly. Then the permanent of the adjacency
matrix equals the determinant of a skew adjacency matrix. The following theo-
rem shows that this method can also be used to compute the permanental poly-
nomial of a type of graphs.

Theorem 3.1. Let G be a bipartite graph with n vertices containing no subgraph
which is an even subdivision of K2,3. Then there exists an orientation Ge of G
such that the permanental polynomial of G

π(G, x) = det(xI − A(Ge)), (12)

where A(Ge) denotes the skew adjacency matrix of Ge.

Proof. Since G is a bipartite graph containing no subgraph which is an even
subdivision of K2,3, by Lemma 2.4, G has an orientation Ge under which every
cycle is oriented oddly. Let A(Ge) be the skew adjacency matrix of Ge and

ψ(G, x) = det(xI − A(Ge)) =
n∑
k=0

ckx
n−k. (13)

Hence we only need to prove that π(G, x) = ψ(G, x).
Note that by equations (5) and (7) the permanental polynomial π(G, x) of

G has the following form.

π(G, x) =
[ n2 ]∑
k=0

b2kx
n−2k, (14)
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where b2k = ∑
H per(A(H)), and the sum ranges over all induced subgraphs H

of G with 2k vertices and A(H) is the adjacency matrix of H . Hence, by Lemma
2.7, we have

b2k =
∑
H

M2(H), (15)

where the sum is over all induced sugraphs of G with 2k vertices and M(H)

denotes the number of perfect matchings of H . So it is suffice for us to prove
that for all k � 0,

c2k+1 = 0, c2k =
∑
H

M2(H). (16)

Note that (−1)kck equals the sum of (−1)k det(A(He)) over all induced subdi-
graphs He of Ge with k vertices, where A(He) is the skew adjacency matrix of
sbdigraph He. Hence when k is odd we have ck = 0 since the determinant of a
skew symmetric matrix of odd order equals zero. So we assume that k is even.
Let H be the underlying graph of He. Since every cycle of G is oriented oddly in
Ge, every cycle of H is oriented oddly in He. Hence He is a Pfaffian orientation
of H . Then, by Lemma 2.1, if k is even we have

ck = (−1)k
∑
H

det(A(He)) =
∑
H

det(A(He)) =
∑
H

M2(H) for all k � 0. (17)

The theorem is thus proved.

Remark 1. If a bipartite graph G has an orientation Ge such that every cycle
in G is oddly oriented in Ge then this orientation works for the statement of
Theorem 3.1.

Corollary 3.2. Let G be a outerplanar bipartite graph. Then G has an orienta-
tion Ge such that

π(G, x) = det(xI − A(Ge)). (18)

Furthermore, such an orientation can be constructed in polynomial time.

Proof. Note that G is a plane graph. Hence, by Lemma 2.2, we can construct
an orientation Ge of G in polynomial time under which every boundary face –
except possibly the infinite face – has and odd number of edges oriented clock-
wise. Furthermore, in every cycle the number of edges oriented clockwise is of
opposite parity to the number of vertices of Ge inside the cycle. Since G is a
outerplanar bipartite, inside every cycle in G there exists no vertex. Hence every
cycle in Ge is oddly oriented. Then, by Remark 1, we have
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π(G, x) = det(xI − A(Ge)). (19)

The corollary is proved.

Corollary 3.3. Let G be an even subdivision of a outerplanar bipartite graph.
Then G has an orientation Ge such that

π(G, x) = det(xI − A(Ge)). (20)

Proof. Note that since G is an even subdivision of a outerplanar bipartite graph
there exist even number of vertices inside very cycle of G. Then similarly to that
in Corollary 3.2 we can prove Corollary 3.3.

Remark 2. Corollary 3.2 is a special case of Corollary 3.3.

Corollary 3.4. Let G be a bipartite graph containing no subgraph which is an
even subdivision of K2,3. Then the roots of the permanental polynomial π(G, x)
of G are pure imaginary or zero.

Proof. By Theorem 3.1, G has an orientation Ge such that π(G, x) = det(xI −
A(Ge)). Note that A(Ge) is a skew adjacency matrix. Since eigenvalues of a skew
adjacency matrix are pure imaginary or zero, the roots of π(G, x) are pure imag-
inary or zero. The corollary thus follows.

Cash [8] said that Klein observed the fact that the roots of the permanen-
tal polynomial of all outerplanar bipartite graphs were pure imaginary or zero.
Now we generalize this result as follows.

Corollary 3.5. Let G be an even subdivision of a outerplanar bipartite graph.
Then the roots of the permanental polynomial π(G, x) are pure imaginary or
zero.

Proof. Similarly to the proof of Corollary 3.4, by Corollaris 3.2 and 3.3 we can
prove Corollary 3.5.

Remark 3. Let G be a graph with n vertices such that the roots of φ(G, x) are
x1, x2, . . . , xn. Borowiechi [1, 2] characterized all graphs the roots of whose per-
manental polynomial are ix1, ix2, . . . , ixn, where i2 = −1. He proved that if the
roots of φ(G, x) are x1, x2, . . . , xn then the roots of π(G, x) are ix1, ix2, . . . , ixn
if and only if G is a bipartite graph containing no cycle of length 4s, s ∈ {1, 2, . . . }.
Furthermore, Borowiecki and Jóžwiak [2] posed the following problem: Charac-
terize those graphs the roots of whose permanental polynomial are pure imagi-
nary or zero. It is obvious that Corollaries 3.4 and 3.5 are a partial solution of
Borowiecki and Jóžwiak’s problem.
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In [8] Cash identified properties and uses of the permanental polynomial
of some unweighted chemical graphs. In terms of Mathematica, with exceptions
he found no permanental polynomial of graphs had factors smaller than them-
selves (that is, factors with integer coefficients; obviously, any polynomial with
roots ri has factors x−ri). On the other hand, the following theorem shows that
there exist many bipartite graphs whose permanental polynomial has factor with
integer coefficients smaller than themselves, that is, we will prove that the per-
manental polynomial of any 2-connected outerplanar bipartite graph G with n

vertices can be a factor of the permanental polynomial of a 2-connected outer-
planar bipartite graph with 2n+ 2 vertices.

Theorem 3.6. Let G be a 2-connected outerplanar bipartite graph with n vertices.
Then there exists a 2-connected bipartite graph G with 2n+ 2 vertices such that
π(G, x) is a factor of π(G, x).

Proof. Take two copies of G, denoted by G1 with the vertex set V (G1) =
{v′

1, v
′
2, . . . , v

′
n} and G2 with the vertex set V (G2) = {v′′

1 , v
′′
2 , . . . , v

′′
n}. Obviously,

the mapping f : v′
i �−→ v′′

i is an isomorphism between G1 and G2. For the
sake of convenience, we assume that v′

1v
′
2 is an edge of G1 lying on the infi-

nite boundary face. Let G be the graph obtained from G, which has the ver-
tex set V (G) = {v′

1, v
′
2, . . . , v

′
n, v

′′
1 , v

′′
2 , . . . , v

′′
n, a, b} and the edge set E(G) =

E(G1)∪E(G2)∪ {v′
1a, v

′′
1b, v

′
2a, v

′′
2b}. Figure 2 shows this procedure constructing

graph G from G.
It is not difficult to see that since G is a 2-connected outerplanar bipartite

graph with n vertices G is a 2-connected outerplanar bipartite graph with 2n+2
vertices. Hence it is suffice to prove that π(G, x) is a factor of π(G, x).

Note that G is an outerplanar bipartite graph. As that in the proof of Cor-
ollary 3.2, G has an orientation Ge such that every cycle of G is oddly oriented
in Ge. Let G

e
be the orientation of G which is obtained from Ge by defining

the orientations of the induced subgraphs G1 and G2 of G to be Ge, and the
directions of edges v′

1a, v
′′
1a, v

′
2b, v

′′
2b in G

e
to be from v′

1 to a, v′′
1 to a, v′

2 to b,
v′′

2 to b, respectively (see Figure 3). It is not difficult to show that G
e

is such an
orientation that every cycle of G is oddly oriented.

Let A(Ge) be the skew adjacency matrix of Ge. Then, by a suitable label-
ling of vertices of G

e
, the skew adjacency matrix A(G

e
) of G

e
has the following

form.

(a) (b)

Figure 2. (a) The graph G; (b) the graph G obtained from G.
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(a) (b)

Figure 3. (a) The orientation Ge of G; (b) the orientation G
e

obtained from Ge.

A(G
e
) =


A(G

e) B 0
−BT 0 −BT

0 B A(Ge)


 , (21)

where B denotes the incident relation between Ge
1 and {a, b} in G

e
, and BT is

the transpose of matrix B. Hence, by Remark 1, we have

π(G, x) = det(xI2n+2 − A(G
e
)) = det


xIn − A(Ge) −B 0

BT xI2 BT

0 −B xIn − A(Ge)




= det


xIn − A(Ge) −B 0

2BT xI2 BT

xIn − A(Ge) −B xIn − A(Ge)




= det


xIn − A(Ge) −B 0

2BT xI2 BT

0 0 xIn − A(Ge)




= det(xIn − A(Ge)) det
[
xIn − A(Ge) −B

2BT xI2

]

= π(G, x) det
[
xIn − A(Ge) −B

2BT xI2

]
.

Note that

det
[
xIn − A(Ge) −B

2BT xI2

]
(22)

is a factor with integer coefficients of π(G, x). The theorem is thus proved.
The following lemma is useful, which was proved by Yan and Zhang [24]

or Yan [25].

Lemma 3.7. [24,25] Let T be a tree with n vertices and T e an arbitrary orienta-
tion of T . Then the eigenvalues of A(T e) are of the form iα1, iα2, . . . , iαn, where
α1, α2, . . . , αn are the eigenvalues of A(T ), and i2 = −1.

Theorem 3.8. Let T be an arbitrary tree with n vertices and T × K2 the Carte-
sian product of graphs T and K2 (the complete graph with two vertices). Then
the permanental polynomial of T ×K2
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π(T ×K2, x) =
∏
α

(x2 + 1 + α2), (23)

where the product ranges over all eigenvalues α of T .

Proof. Let T e be an arbitrary orientation of T and (T × K2)
e the orientation

of T ×K2 defined in Lemma 2.6 (see Figure 1). By Lemma 2.6, every cycle of
T ×K2 is oddly oriented in (T ×K2)

e. Then, by Remark 1, we have

π(T ×K2, x) = det(xI2n − A((T ×K2)
e)), (24)

where A((T ×K2)
e) denotes the skew adjacency matrix of (T ×K2)

e, and I2n is
the unit matrix of order 2n.

By a suitable labelling of vertices of (T × K2)
e, the skew adjacency matrix

of (T ×K2)
e has the following form.

A((T ×K2)
e) =

[
A(T e) In
−In −A(T e)

]
, (25)

where A(T e) is the skew adjacency matrix of T e. Hence we have

π(T ×K2, x) = det
[
xIn − A(T e) −In

In xIn + A(T e)

]

= det(x2In − A2(T e)+ In)

= det((x2 + 1)In − A2(T e)).

Suppose that the eigenvalues of A(T ) are α1, α2, . . . , αn. Then, by Lemma 3.7,
A(T e) has eigenvalues iα1, iα2, . . . , iαn, where i2 = −1. Hence we have

π(T ×K2, x) = det((x2 + 1)In − A2(T e)) =
n∏
k=1

(x2 + 1 + α2
k ). (26)

Thus the theorem is proved.

Remark 4. Note that Schwenk [26] ever proved that almost all trees have cospec-
tral trees. Merris et al. [5] used this fact to show that almost all trees have coper-
manental trees (two graphs G and H are called to be copermanental if π(G, x) =
π(H, x) and G and H are not isomorphic). Obviously, by Theorem 3.8, there
exist infinite many pair of 2-connected bipartite graphs which are copermanen-
tal, since if T1 and T2 are two cospectral trees then by Theorem 3.8 T1 ×K2 and
T2 ×K2 are copermanental.
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Corollary 3.9. Let T be an arbitrary tree with n vertices and T × K2 the Carte-
sian product of graphs T and K2 (the complete graph with two vertices). Then
the permanental polynomial of T ×K2

π(T ×K2, x) = (x2 + 1)n−2r [a0(x
2 + 1)r − a1(x

2 + 1)r−1 + · · · + (−1)rar ]2, (27)

where r is the maximum number of edges in a matching of T , and the charac-
teristic polynomial of T is φ(T , x) = xn−2r ∑r

j=0 ajx
2r−2j , and a0 = 1.

Proof. Note that φ(T , x) = xn−2r ∑r
j=0 aix

2r−2j = xn−2r ∏r
j=1(x

2 − α2
j ), where

the positive eigenvalues of T are α1, α2, . . . , αr . Since the spectrum of T is sym-
metric with respect to zero, by Theorem 3.8 we have

π(T ×K2, x) = (x2 + 1)n−2r
r∏
j=1

(x2 + 1 + α2
j )

2. (28)

Note that

φ2(T , ix) = {(ix)n−2r
r∏
j=1

[(ix)2 − α2
j ]}2 = (−1)n−2r (x2)n−2r

r∏
j=1

(x2 + α2
j )

2,

where i2 = −1. Hence by equation (28) we have

π(T ×K2, x) = (−1)n−2rφ2(T , i
√
x2 + 1)

= (x2 + 1)n−2r [(x2 + 1)r − a1(x
2 + 1)r−1 + · · · + (−1)rar ]2.

The corollary thus follows.

Remark 5. In Corollary 3.9, if n is even or n = 2r, then π(T × K2, x) can
be denoted by the square of a polynomial with integer coefficients. This fact
shows again that there exist many 2-connected bipartite graphs whose permanen-
tal polynomial has factor with integer coefficients smaller than themselves.
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[2] M. Borowiecki and T. Jóžwiak, A note on characteristic and permanental polynomials of mul-
tigraphs, in: M. Bowowiecki, J.W. Kennedy and M.M. Syslo (eds.) Graph Theory (Lagów, 1981,
Springer-Verlag, Berlin, 1983), pp. 75–78.

[3] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs (VEB Deutscher Verlag Der Wis-
senschaften, Berlin, 1980).

[4] I. Gutman and G.G. Cash, Relations between the permanental and characteristic polynomials
of fullerenes and benzenoid hydrocarbons, Match-Commun. Math. Comput. Chem. 45 (2002)
55–70.

[5] R. Merris, K.R. Rebman and W. Watkins, Permanental polynomials of graphs, Linear Alg.
Appl. 38 (1981) 273–288.

[6] B. Codenotti, and G. Resta, Computation of spare circulant permanents via determinants, Lin-
ear Alg. Appl. 355 (2002) 15–34.
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